Name, Email, and Session















Short-Answer Questions





























Data Transformation with R tidyverse



For the questions in the R section, consider the data.frame nyc_payroll_new. For detailed descriptions of the variables in this data.frame, please refer to the following link: Citywide Payroll Data (Fiscal Year).

library(tidyverse)
library(skimr)
nyc_payroll_new <- read_csv("https://bcdanl.github.io/data/nyc_payroll_2024.csv")




nyc_payroll_new |>
  filter(__BLANK__)


nyc_payroll_new |> 
  __BLANK__


nyc_payroll_new |> 
  __BLANK__


nyc_payroll_new |> 
  rename(__BLANK__)


nyc_payroll_new |> 
  filter(__BLANK 1__) |> 
  arrange(__BLANK 2__)


nyc_payroll_new |> 
  filter(__BLANK 1__) |> 
  select(__BLANK 2__, __BLANK 3__, __BLANK 4__)


nyc_payroll_new |> 
  __BLANK__