Lecture 4
Data Collection II: Web-scrapping Primer; Scrapping Data with selenium

Byeong-Hak Choe

bchoe@geneseo.edu

SUNY CGeneseo

February 13, 2026

mailto:bchoe@geneseo.edu

“ Premier on Web-
scrapping

+»== Data Collection via Web-scraping

» Web pages can be a rich data source, but web scraping is powerful.

Careless scraping can harm websites, violate rules, or compromise
privacy.

» Our goal in this module:

Learn the web fundamentals (client/server, HTTPS, URL,
HTML/DOM),

Understand ethical, responsible scraping

L& “Legal” Is Not the Same as “Ethical”
| “If you can see things in your web browser, you can scrape them.”

« Legally (U.S.): publicly available data may sometimes be scraped using
automated tools in US (e.g., hiQ Labs vs. LinkedIn Corp.)

 But legality # permission or responsibility:
Technically: it may be possible.

Ethically: you still must consider terms or service (ToS), robots.txt,
privacy, and data minimization.

Practically: you can trigger blocks or harm service quality (e.g.,
overloading servers, ToS/privacy issues).

Warning

Legal # ethical. Even if data is “public,” ToS, privacy expectations, and platform blocks still matter.

https://en.wikipedia.org/wiki/HiQ_Labs_v._LinkedIn
https://en.wikipedia.org/wiki/Robots.txt

B < Clients and Servers

' E Request
Client Response

e Devices on the web act as clients and servers.
» Your browser is a client; websites and data live on servers.
= Client: your computer/phone + a browser (Chrome/Firefox/Safari).

= Server: a computer that stores webpages/data and sends them
when requested.

» When you load a page, your browser sends a request and the server
sends back a response (the page content).

3 © Hypertext Transfer Protocol Secure (HTTPS)

o HTTP is how clients and servers communicate.

o HTTPS is encrypted HTTP (safer).

When we type a URL starting with https://:

1. Browser finds the server.
. Browser and server establish a secure connection.
Browser sends a request for content.

Server responds (e.g., 200 OK) and sends data.

o1 B~ W DN

. Browser decrypts and displays the page.

8 &3 HTTP Status Codes

library for making HTTPS requests in Python

import requests

p = 'https://bcdanl.github.io/210"' p = 'https://bcdanl.github.io/2100"'
response = requests.get(p) response = requests.get(p)
print(response.status code) print(response.status code)
print(response.reason) print(response.reason)

¢ 200 OK — success; content * 404 Not Found — URL/page
returned. doesn’t exist (typo, removed page,

broken link).

10

& ? URL (what you're actually requesting)

il o

http:// www.example.com /pages/ ?id=1&cat=test #article

—

» A URL is a location for a resource on the internet.

o Often includes:

Protocol (nttps)

Domain (examp Le. com)

Path (/products)

Query string (?1d=...&cat=...) « common in data pages

Fragment (#section) « in-page reference

11

7 HTML Basics

=, The Big Idea: Scraping = Selecting from
HTML

» HTML (HyperText Markup Language) is the markup that defines the
structure of a web page (headings, paragraphs, links, tables, etc.).

» When you “scrape,” you usually:

1. Load a page

2. Examine the HTML

3. Extract specific elements (title, price, table, links, etc.)
* If you don’t understand HTML, you can’t reliably target the right data.
* Selenium is not “magic”—it automates a browser, but you still need to:

Inspect the HTML to identify and target the right elements

14

]

2 Home

& Syllabus

B Brightspace
[Google Colab
2 Lecture (PDF)
Lecture

Classwork

M Homework

2 Exams
@ Project
2 Weeks

Week 01

Week 02

Week 03

Week 04

DANL 210: Data Preparation and Management, Spring 2026

</> Class Code

DANL 210: Data Preparation and Management,

Spring 2026
Instructor: Byeong-Hak Choe (< Email)

Welcome! &

— Explore, Learn, and Grow with Data Analytics! .

Lecture

Title Subtitle Date
Lecture Syllabus and Course Outline January 21,

1 2026
Lecture Python Fundamentals January 23,

2 2026
Lecture Data Collection I: DataFrame; Spyder IDE; Scrapping Web-tables February 9,

3 with pd. read_html() 2026

Lecture Data Collection Il: Web-scrapping Primer; Scrapping Data with
4 selenium

== Classwork

Title Subtitle Date

February 13,
2026

2 HTML in Browser vs. HTML Source Code

++<!DOCTYPE html> == $0

<html xmlns="http://www.w3.0rg/1999/xhtml" lang="en" xml:lang="en"> scroll x
» <head> - </head>
v<body class="nav-sidebar docked nav-fixed fullcontent quarto-light" data-bs-offset="78"
style="padding-top: 78px;">
<div id="quarto-search-results'"></div>
» <header id="quarto-header" class="headroom fixed-top">(. </header>
<!—— content ——>
v<div id="quarto-content" class="quarto-container page-columns page-rows-contents page-1
ayout-article page-navbar" style="min-height: calc(-184px + 1@@vh);">grid
<!-—— sidebar -—>
»<nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal sidebar-navigati
on docked overflow-auto" style="top: 78px; max-height: calc(-78px + 10@vh);"

wo</nav>
flex
<div id="quarto-sidebar-glass" data-bs-toggle="collapse" data-bs-target="#quarto-sideb
ar,#quarto-sidebar-glass"></div>
<!-- margin-sidebar -->
<!-- main ——>

v<main clas content" id="quarto-document-content'>
» <header id="title-block-header" class="quarto-title-block default">(.. </header>
<div style="display:block; margin:25px;"> </div>
P <p>(en</p>
<div style="display:block; margin:-10px;"> </div>
b <p>i</p>
<div style="display:block; margin:5px;"> </div>
» <section id="lecture" class="1level2">(. </section>
» <section id="classwork" class="level2">(. </section>
» <section id="homework" class="1level2"> . </section>
» (..
» <a onclick="window.scrollTo(@, @); return false;" role="button" id="quarto-back-to-t
op''> i
</main>
» <font size=!
</div>
» (..
</body>
</html>

>

15

@ > Document Object Model (DOM)

The Browser'’s “Tree” of the Page

document

Root element:
<html>
Element:
<head>

» The browser represents HTML as
the DOM (Document Object
Model).

o Selenium interacts with the DOM.

Element:
<title>
Text:
"My title”
Element:
<h1>
Text:
"A heading"
Element: Attribute:
<a> href
Text:
"Link text"

* Scraping often becomes:

“Find the node”

“Extract its text/attribute”

Element:

<body>

Document Object Model

16

Q& Inspecting HTML (your #1 web-scrapping
skill)

» Open a Chrome browser.
» Open DevTools:

= F12, or right-click = Inspect
 Use it to find:

= Element text

= 1id/class

= Attributes (like href, data—x)

17

<< HTML Elements (what you actually scrape)

» Most HTML is built from elements like:
<tagname>Content goes here...</tagname>

» Common ones you’ll extract:
= Headings: <h1l> ... </hl>
= Textblocks: <p> ... </p>
= Links: ...

= Tables: <table> ... </table>

= Containers: <div> ... </div>

= Inline text: ...

&= HTML Body: Links and Images

<a> (Link)

This is a link

» The href attribute is often what you scrape.

 (Image)

» You may scrape src (image URL) or a Lt (description).

19

= HTML Tables

<table style="width:100%">
<tr>
<th>Firstname</th>
<th>Lastname</th>
<th>Age</th>
</tr>
<tr>
<td>Eve</td>
<td>Jackson</td>
<td>94</td>
</tr>
</table>

Table structure:
= <table> table container
= <tr>row
= <th> header cell

= <td> data cell

20

Lists you'll see in the wild

@ Unordered List (<u1>) & Ordered List (<o 1>)

Coffee</1li> Coffee</1li>
Tea</1li> Tea</1li>
<1li>Milk</1li> <1li>Milk</1i>

» Coffee 1. Coffee
e Jea 2. Tea

» Milk 3. Milk

21

@& @ Containers you’ll target a lot: <div> and

<div> — block-level container

<div style="background-color:black;color:white;padding:20px;">
<h2>Seoul</h2>
<p>Seoul is the capital city of South Korea...</p>

</div>

Seoul is the capital city of South Korea...

Often used to group major page sections.

 — inline container

<p>My mother has blue eyes...</p>

My mother has blue eyes... 2

5+ Web-scrapping with

Python selenium

? What is Selenium?

A

* Selenium is a tool that lets Python control a real web browser (like
Chrome or Firefox) automatically.

o Itis used for:
= Web automation (click buttons, fill forms, scroll pages)

= Web scraping when a website is dynamic (JavaScript loads content
after the page opens)

» Selenium works by interacting with the page’s DOM (Document Object
Model):

= |t finds elements in HTML

= Then reads text/attributes or performs actions (click, type, scroll)

WebDriver

» WebDriver is an wire protocol that defines a language-neutral interface
for controlling the behavior of web browsers.

 The purpose of WebDiriver is to control the behavior of web browsers
programmatically, allowing automated interactions such as:

Extracting webpage content

Opening a webpage

Clicking buttons

Filling out forms

Running automated tests on web applications

» Selenium WebDriver refers to both the language bindings and the
implementations of browser-controlling code.

26

Driver

» Each browser requires a specific WebDriver implementation, called a
driver.

Web browsers (e.g., Chrome, Firefox, Edge) do not natively
understand Selenium WebDriver commands.

To bridge this gap, each browser has its own WebDriver
implementation, known as a driver.

o The driver handles communication between Selenium WebDriver and
the browser.

This driver acts as a middleman between Selenium WebDriver and
the actual browser.

» Different browsers have specific drivers:
ChromeDriver for Chrome

GeckoDriver for Firefox .

WebDriver-Browser Interaction

» A simplified diagram of how WebDriver interacts with browser might
look like this:

Browser
WebDriver

Bindings +
support classes

Host System

Driver
ChromeDriver, eg

» WebDriver interacts with the browser via the driver in a two-way
communication process:

1. Sends commands (e.g., open a page, click a button) to the browser.

2. Receives responses from the browser.

28

“\ Setting up
» Install the Chrome or FireFox web-browser if you do not have either of
them.
= | will use the Chrome.
* Install Selenium using pip:
= On the Spyder Console, run the following:
= pip install selenium

* Selenium with Python is a well-documented reference.

29

https://selenium-python.readthedocs.io/index.html

L
&V

< Setting up - webdriver.Chrome()

N

» To begin with, we import (1) webdriver from selenium and (2) the
By and Options classes.

= webdriver.Chrome() opens the Chrome browser that is being
controlled by automated test software, se Lenium.

1 import pandas as pd

2 import os, time, random

3 from io import StringIO

4

5 # Import the necessary modules from the Selenium library

6 from selenium import webdriver # Main module to control the browser

7 from selenium.webdriver.common.by import By # Helps locate elements on the webpage
8 from selenium.webdriver.chrome.options import Options # Allows setting browser opt
9 from selenium.webdriver.support.ui import WebDriverWait

10 from selenium.webdriver.support import expected conditions as EC

11 from selenium.common.exceptions import NoSuchElementException

12 from selenium.common.exceptions import TimeoutException

13 from selenium.common.exceptions import StaleElementReferenceException

14

15

16 # Set the working directory path

17 wd path = 'ABSOLUTE PATHNAME OF YOUR WORKING DIRECTORY' # e.g., '/Users/bchoe/Docun

30

@ get () Method in WebDriver

« get(url) fromwebdriver opens the specified URL in a web
browser.

» When using webdriver in Google Chrome, you may see the message:

= “Chrome is being controlled by automated test software.”

form url = "https://gavbox.github.io/demo/webtable/"
driver.[?](form url)
driver.close()

driver.quit()
o close() terminates the current browser window.

e quit () completely exits the webdriver session, closing a browser
window.

31

+» Inspecting a Web Element with
find_element()
» Once the Google Chrome window loads with the provided URL, we
need to find specific elements to interact with.

The easiest way to identify elements is by using Developer Tools to
inspect the webpage structure.

« To inspect an element:
1. Right-click anywhere on the webpage.
2. Select the Inspect option from the pop-up menu.

3. Inthe Elements panel, hover over the DOM structure to locate the
desired element.

32

(& Inspecting a Web Element with
find _element()

» When inspecting an element, look for:

= HTML tag (e.g., <input>, <button>, <div>) used for the
element.

= Attributes (e.g., 1d, class, name) that define the element.
= Attribute values that help uniquely identify the element.

= Page structure to understand how elements are nested within each
other.

33

. Locating Web Elements

by find element() &
find elements()

? Locating Web Elements by find _element ()

 There are various strategies to locate elements in a page.

find element(By.ID, "id")

find element(By.CLASS NAME, "class name")

find element(By.NAME, "name")

find element(By.CSS_SELECTOR, "css selector")

find element(By.TAG NAME, "tag name")

find_element (By.LINK_TEXT, "link text")

find_element (By.PARTIAL LINK TEXT, "partial link text")
find element(By.XPATH, "xpath")

» Selenium provides the find_element () method to locate elements in
a page.
» To find multiple elements (these methods will return a list):

= find_elements()

36

find_element(By.ID, "")

o« find_element(By.ID, "") & find_elements(By.ID, ""):
= Return element(s) that match a given ID attribute value.

» Example HTML code where an element has an ID attribute Torm1:

1 <form id="forml">...</form>

« Example of locating the form using find_element(By.ID, ""):

1 form = driver.find element(By.ID, "forml")

2 form.text # Retrieves text content if available

37

find_element(By.CLASS NAME, "")

o find_element(By.CLASS_NAME, "") &
find_elements(By.CLASS_NAME, ""):

= Return element(s) matching a specific class attribute.

» Example HTML code with a homebtn class:

1 <div class="homebtn" align="center">...</div>

1 home button = driver.find element(By.CLASS NAME, "homebtn")
2 home button.click() # Clicks the home button
3 driver.back() # Navigates back to the previous page

38

find_element(By.NAME, "")

o find_element(By.NAME, "") & find_elements(By.NAME,
IIII):

= Return element(s) with a matching name attribute.

» Example HTML code with a name attribute home:

1 <input type="button" class="btn" name="home" value="Home" />

1 home button2 = driver.find element(By.NAME, "home")
2 home button2.click()
3 driver.back()

39

find_element(By.CSS_SELECTOR, "")
o find_element(By.CSS_SELECTOR, "") &
find_elements(By.CSS_SELECTOR, ""):
= Locate element(s) using a CSS selector.
» Inspect the webpage using browser Developer Tools.
* Locate the desired element in the Elements panel.
» Right-click and select Copy selector

= Let’s find out CSS selector for the Home button.

home button3 = driver.find element(By.CSS_SELECTOR, "body > div > a > input")
home button3.click()

driver.back()

40

find_element(By.TAG_NAME, "")

o find_element(By.TAG_NAME, "") &
find_elements(By.TAG_NAME, ""):

= Locate element(s) by a specific HTML tag.

1 table0l = driver.find element(By.ID, "tableOl")
2 thead = table0l.find element(By.TAG NAME, "thead")
3 thead.text

4

find_element(By.LINK TEXT, "")

o find_element(By.LINK_TEXT, "") &
find_elements(By.LINK_TEXT, ""):
= Locate link(s) using the exact text displayed.

» Example HTML for a Selenium link:

1 Selenium

1 selenium link = driver.find element(By.LINK_ TEXT, "Selenium")
2 selenium link.click()

3 driver.back()

42

find_element (By.PARTIAL_LINK_TEXT, "")

* Finds link(s) containing partial text.

Selen links = driver.find elements(By.PARTIAL LINK TEXT, "gav")
print(len(Selen links))
Selen links[0].click()

driver.back()

B> W N =

43

find_element(By.XPATH, "")

o find_element(By.XPATH, "..") and
find_elements(By.XPATH, ".."):

= Find element(s) that match the given XPath expression.

= find_element(...) returns one matching element (the first
match).

= find_elements(...) returns a list of all matching elements.
» XPath is a query language for locating nodes in a tree structure.

= Web pages are written in HTML, and the browser represents them
as a DOM tree, which XPath can query.

= Selenium supports XPath in all major browsers.

= XPath is useful when id/name/class selectors are missing,
duplicated, or unstable.

= It's powerful for navigating nested or complex HTML structures. =

Basic XPath Pattern

//tag name[@attribute='value']

» // — search anywhere in the document
« tag_name — HTML tag name (input, div, span, table, etc.)

e« @attribute — attribute name (1d, class, aria—-Llabel, role,
data—x, etc.)

» '"value' — the attribute’s value (quoted)

45

XPath vs. Full XPath

When you right-click an element in Chrome DevTools — Copy, you often
see:
» Copy XPath (often a relative-style XPath)
Typically starts with / /. . .
Tries to find the element using attributes and structure
Usually more flexible if the page layout changes
 Copy Full XPath
Typically starts with /html/body/. ..
A complete path from the root of the document tree

Often fragile: if the page structure changes, it can break easily

In practice: prefer XPath (the shorter one) over Full XPath when possible.

46

Example: Finding the 2nd Table with XPath

» Suppose we want the second <table> on a page, but the tables have
no unique id or class.

« Using find_element(By.TAG_NAME, "table") istoo vague
because it returns only the first table.

» XPath can target the second one:

second table on the page:
second_table = driver.find element(By.XPATH, "(//table)[2]")

47

‘X Extracting XPath from Developer Tools

Inspect the webpage using browser Developer Tools.

Locate the desired element in the Elements panel.

Right-click and select Copy XPath.

Example extracted XPath:

//*[@id="table02"]/tbody/tr[1]/td[1]
/html/body/form/fieldset/div/div/table/tbody/tr[1]/td[1]

48

@ Example: Finding an Element Using XPath

» Locate “Tiger Nixon” in the second table:

elt = driver.find element (By.XPATH, '//*[@id="table02"]/tbody/tr[1]/td[1]")
print(elt.text) # Output the extracted text

49

When to Use XPath

» Use XPath when:
The element lacks a unique ID or class.

Other locator methods (By . ID, By.CLASS_NAME, etc.) don’t
work.

« Limitations:
XPath can be less efficient than ID-based locators.
Page structure changes may break XPath-based automation.

 For our tasks, however, XPath remains a reliable and effective method!

50

Web-scrapping with Python selenium

Let’s do Classwork 4!

51

https://bcdanl.github.io/210/danl-cw/danl-210-cw-04.html

- Retrieving Attribute Values with
get_attribute()
HTML Example

- get_attribute() extracts an element’s attribute value.

« Useful for retrieving hidden properties not visible on the page.

Selenium

<input id="btn" class="btn" type="button" onclick="change text(this)" wvalue="Delete

Python Example

driver.find element(By.XPATH, '//*[@id="table0l"]/tbody/tr[2]/td[3]/a').get attribu
driver.find element(By.XPATH, '//*[@id="btn"]').get attribute('value')

52

O/, NoSuchElementException and try-
except blocks

try:
elem = driver.find element(By.XPATH, "element xpath")
elem.click()

except:

pass

« When a web element is not found, it throws the
NoSuchElementException.

= try—-except can be used to avoid the termination of the selenium
code.

» This solution is to address the inconsistency in the DOM among the
seemingly same pages.

53

« WebDriverWait

S Two different “waits”

» Pause to respect servers (politeness):

= Use time.sleep(random.uniform(a, b)) asasmall
human-like delay between actions/pages.

= This helps avoid hammering a website with rapid-fire requests.

= Use time.sleep(random.uniform()) for politeness (respect
servers).

» Wait for the page to be ready (robustness):
= UseWebDriverWait () + a condition (presence/clickable).
= This prevents flaky failures on slow networks or busy sites.

=« Use WebDriverWait () for robustness (wait for conditions).

Best practice: Use both—WebDriverWait for robustness, and small randomized sleeps

for politeness.
56

W@ Polite Scraping: Randomized Pauses with
time.sleep(random.uniform())

import time, random

Example: polite delay between actions/pages

time.sleep(random.uniform(0.5, 1.5)) # small jitter (adjust as needed)

» After each page load, click, or data extraction, add a small randomized
pause.

« This is not about “waiting for the DOM”—it is about respecting servers
and reducing bursty traffic.

57

Web-scrapping with Python selenium

Let’s do Classwork 5!

58

https://bcdanl.github.io/210/danl-cw/danl-210-cw-05.html

1.&& Why time.sleep() Alone is Not Robust

import time

url = "https://qgavbox.github.io/demo/delay/"

driver.get(url)
driver.find element(By.XPATH, '//*[@id="one"]/input').click()
time.sleep(2) # blind wait: always 2 seconds

element = driver.find element(By.XPATH, '//*[@id="two"]")

element.text

o Time.sleep() is a blind wait:
= If content loads faster, you waste time.
= If content loads slower, your code may crash (element not found).

» For reliable automation/scraping, use condition-based waits.

59

£4°> Robust Wait for Presence (exists in DOM)
with WebDriverWait() +
expected_conditions

1 driver.get("https://gavbox.github.io/demo/delay/")
2 driver.find element(By.XPATH, '//*[@id="one"]/input').click()

3

4 try:

5 element = WebDriverWait(driver, 10).until(

6 EC.presence of element located((By.XPATH, '//*[@id="two"]1'))
7)

8 print(element.text)

9 except TimeoutException:

10 print("Timed out: element did not appear within 10 seconds.")

» Good when the element is added to the DOM but might not be visible
yet.

60

Robust Wait for Clickable (Visible + Enabled)
with WebDriverWait() +
expected_conditions

1 btn = WebDriverWait(driver, 10).until(

2 EC.element to be clickable((By.XPATH, '//*[@id="one"]/input'))
3)

4 btn.click()

» Best when you want to click reliably.

61

% A Common Pattern (Robust + Polite)

Robust: wait until the table is present
table = WebDriverWait(driver, 10).until(
EC.presence of element located((By.TAG NAME, "table"))

Extract something...

html = table.get attribute("outerHTML")

Polite: pause before the next request/action

time.sleep(random.uniform(1l, 3))

62

B © Selenium with

pd.read html () for Table
Scrapping

Selenium with pd. read _html () for Table
Scrapping

* Yahoo! Finance has probably renewed its database system, so that
yfinance does not work now.

» Yahoo! Finance uses web table to display historical data about a
company’s stock.

o Let’s use Selenium with pd. read_html() to collect stock price data!

65

https://finance.yahoo.com/quote/NVDA/history/?p=NVDA&period1=1672531200&period2=1772323200

84~ Selenium with pd.read _html() for Yahoo!
Finance Data

Load content page
url = 'https://finance.yahoo.com/quote/MSFT/history/?p=MSFT&periodl=1672531200&peri

driver.get(url)
time.sleep(random.uniform(3, 5)) # wait for table to load

» periodl and period2 values for Yahoo Finance URLs uses Unix
timestamps (number of seconds since January 1, 1970),

= 1672531200 — 2023-01-01
= 1772323200 — 2026-03-01

66

=4 get_attribute("outerHTML")

1 # Extract the <table> HTML element

2 table html = driver.find element(By.TAG NAME, 'table').get attribute("outerHTML")
3

4 # Parse the HTML table into a pandas DataFrame

5 df = pd.read html(StringIO(table html))[0]

o StringlIO turns that string into a file-like object, which is what
pd.read_json() expects moving forward.

« .get_attribute("outerHTML"): gets the entire HTML from the
WebElement.

67

Web-scrapping with Python selenium

Let’s do Classwork 6!

68

https://bcdanl.github.io/210/danl-cw/danl-210-cw-06.html

