
Lecture 4
Data Collection II: Web-scrapping Primer; Scrapping Data with selenium

Byeong-Hak Choe

SUNY Geneseo

February 13, 2026

bchoe@geneseo.edu

1

mailto:bchoe@geneseo.edu

 Premier on Web-Premier on Web-Premier on Web-Premier on Web-
scrappingscrappingscrappingscrapping

3

 Data Collection via Web-scraping Data Collection via Web-scraping Data Collection via Web-scraping Data Collection via Web-scraping
Web pages can be a rich data source, but web scraping is powerful.

▪ Careless scraping can harm websites, violate rules, or compromise
privacy.

Our goal in this module:

▪ Learn the web fundamentals (client/server, HTTPS, URL,
HTML/DOM),

▪ Understand ethical, responsible scraping

4

 “Legal” Is Not the Same as “Ethical” “Legal” Is Not the Same as “Ethical” “Legal” Is Not the Same as “Ethical” “Legal” Is Not the Same as “Ethical”
“If you can see things in your web browser, you can scrape them.”

Legally (U.S.): publicly available data may sometimes be scraped using
automated tools in US (e.g.,)hiQ Labs vs. LinkedIn Corp.

But legality ≠ permission or responsibility:

▪ Technically: it may be possible.

▪ Ethically: you still must consider terms or service (ToS), ,
privacy, and data minimization.

robots.txt

▪ Practically: you can trigger blocks or harm service quality (e.g.,
overloading servers, ToS/privacy issues).

Legal ≠ ethical. Even if data is “public,” ToS, privacy expectations, and platform blocks still matter.

Warning

5

https://en.wikipedia.org/wiki/HiQ_Labs_v._LinkedIn
https://en.wikipedia.org/wiki/Robots.txt

 Web Basics: Clients andWeb Basics: Clients andWeb Basics: Clients andWeb Basics: Clients and
ServersServersServersServers

7

↔ Clients and Servers Clients and Servers Clients and Servers Clients and Servers

Devices on the web act as clients and servers.

Your browser is a client; websites and data live on servers.

▪ Client: your computer/phone + a browser (Chrome/Firefox/Safari).

▪ Server: a computer that stores webpages/data and sends them
when requested.

When you load a page, your browser sends a request and the server
sends back a response (the page content).

8

 Hypertext Transfer Protocol Secure (HTTPS) Hypertext Transfer Protocol Secure (HTTPS) Hypertext Transfer Protocol Secure (HTTPS) Hypertext Transfer Protocol Secure (HTTPS)
HTTP is how clients and servers communicate.

HTTPS is encrypted HTTP (safer).

When we type a URL starting with https://:

1. Browser finds the server.

2. Browser and server establish a secure connection.

3. Browser sends a request for content.

4. Server responds (e.g., 200 OK) and sends data.

5. Browser decrypts and displays the page.

9

 HTTP Status Codes HTTP Status Codes HTTP Status Codes HTTP Status Codes
library for making HTTPS requests in Python1
import requests2

p = 'https://bcdanl.github.io/210'1
response = requests.get(p)2
print(response.status_code)3
print(response.reason)4

200 OK → success; content
returned.

p = 'https://bcdanl.github.io/2100'1
response = requests.get(p)2
print(response.status_code)3
print(response.reason)4

404 Not Found → URL/page
doesn’t exist (typo, removed page,
broken link).

10

 URL (what you’re actually requesting) URL (what you’re actually requesting) URL (what you’re actually requesting) URL (what you’re actually requesting)

A URL is a location for a resource on the internet.

Often includes:

▪ Protocol (https)

▪ Domain (example.com)

▪ Path (/products)

▪ Query string (?id=...&cat=...) ← common in data pages

▪ Fragment (#section) ← in-page reference
11

 HTML BasicsHTML BasicsHTML BasicsHTML Basics

13

 The Big Idea: Scraping = Selecting from The Big Idea: Scraping = Selecting from The Big Idea: Scraping = Selecting from The Big Idea: Scraping = Selecting from
HTMLHTMLHTMLHTML

HTML (HyperText Markup Language) is the markup that defines the
structure of a web page (headings, paragraphs, links, tables, etc.).

When you “scrape,” you usually:

1. Load a page

2. Examine the HTML

3. Extract specific elements (title, price, table, links, etc.)

If you don’t understand HTML, you can’t reliably target the right data.

Selenium is not “magic”—it automates a browser, but you still need to:

▪ Inspect the HTML to identify and target the right elements

14

 HTML in Browser vs. HTML Source Code HTML in Browser vs. HTML Source Code HTML in Browser vs. HTML Source Code HTML in Browser vs. HTML Source Code

15

 Document Object Model (DOM) Document Object Model (DOM) Document Object Model (DOM) Document Object Model (DOM)
The Browser’s “Tree” of the PageThe Browser’s “Tree” of the PageThe Browser’s “Tree” of the PageThe Browser’s “Tree” of the Page

The browser represents HTML as
the DOM (Document Object
Model).

Selenium interacts with the DOM.

Scraping often becomes:

▪ “Find the node”

▪ “Extract its text/attribute”

16

 Inspecting HTML (your #1 web-scrapping Inspecting HTML (your #1 web-scrapping Inspecting HTML (your #1 web-scrapping Inspecting HTML (your #1 web-scrapping
skill)skill)skill)skill)

Open a Chrome browser.

Open DevTools:

▪ F12, or right-click → Inspect

Use it to find:

▪ Element text

▪ id / class
▪ Attributes (like href, data-*)

17

 HTML Elements (what you actually scrape) HTML Elements (what you actually scrape) HTML Elements (what you actually scrape) HTML Elements (what you actually scrape)
Most HTML is built from elements like:

<tagname>Content goes here...</tagname>1

Common ones you’ll extract:

▪ Headings: <h1> ... </h1>
▪ Text blocks: <p> ... </p>
▪ Links: ...
▪ Tables: <table> ... </table>
▪ Containers: <div> ... </div>
▪ Inline text: ...

18

 HTML Body: Links and Images HTML Body: Links and Images HTML Body: Links and Images HTML Body: Links and Images

<a> (Link)

The href attribute is often what you scrape.

This is a link1

 (Image)

You may scrape src (image URL) or alt (description).

1

19

 HTML Tables HTML Tables HTML Tables HTML Tables
<table style="width:100%">1
 <tr>2
 <th>Firstname</th>3
 <th>Lastname</th> 4
 <th>Age</th>5
 </tr>6
 <tr>7
 <td>Eve</td>8
 <td>Jackson</td>9
 <td>94</td>10
 </tr>11
</table>12

Table structure:

▪ <table> table container

▪ <tr> row

▪ <th> header cell

▪ <td> data cell

20

 Lists you’ll see in the wild Lists you’ll see in the wild Lists you’ll see in the wild Lists you’ll see in the wild

 Unordered List ()
1
 Coffee2
 Tea3
 Milk4
5

Coffee

Tea

Milk

 Ordered List ()
1
 Coffee2
 Tea3
 Milk4
5

1. Coffee

2. Tea

3. Milk

21

 Containers you’ll target a lot: Containers you’ll target a lot: Containers you’ll target a lot: Containers you’ll target a lot: <div> and and and and

<div> – block-level container – block-level container – block-level container – block-level container

<div style="background-color:black;color:white;padding:20px;">1
 <h2>Seoul</h2>2
 <p>Seoul is the capital city of South Korea...</p>3
</div>4

SeoulSeoulSeoulSeoul

Seoul is the capital city of South Korea…

Often used to group major page sections.

 – inline container – inline container – inline container – inline container
<p>My mother has blue eyes...</p>1

My mother has blue eyes… 22

 Web-scrapping withWeb-scrapping withWeb-scrapping withWeb-scrapping with
Python Python Python Python selenium

24

 What is Selenium? What is Selenium? What is Selenium? What is Selenium?

Selenium is a tool that lets Python control a real web browser (like
Chrome or Firefox) automatically.

It is used for:

▪ Web automation (click buttons, fill forms, scroll pages)

▪ Web scraping when a website is dynamic (JavaScript loads content
after the page opens)

Selenium works by interacting with the page’s DOM (Document Object
Model):

▪ It finds elements in HTML

▪ Then reads text/attributes or performs actions (click, type, scroll)
25

WebDriverWebDriverWebDriverWebDriver
WebDriver is an wire protocol that defines a language-neutral interface
for controlling the behavior of web browsers.

The purpose of WebDriver is to control the behavior of web browsers
programmatically, allowing automated interactions such as:

▪ Extracting webpage content

▪ Opening a webpage

▪ Clicking buttons

▪ Filling out forms

▪ Running automated tests on web applications

Selenium WebDriver refers to both the language bindings and the
implementations of browser-controlling code.

26

DriverDriverDriverDriver
Each browser requires a specific WebDriver implementation, called a
driver.

▪ Web browsers (e.g., Chrome, Firefox, Edge) do not natively
understand Selenium WebDriver commands.

▪ To bridge this gap, each browser has its own WebDriver
implementation, known as a driver.

The driver handles communication between Selenium WebDriver and
the browser.

▪ This driver acts as a middleman between Selenium WebDriver and
the actual browser.

Different browsers have specific drivers:

▪ ChromeDriver for Chrome

▪ GeckoDriver for Firefox
27

 WebDriver-Browser Interaction WebDriver-Browser Interaction WebDriver-Browser Interaction WebDriver-Browser Interaction
A simplified diagram of how WebDriver interacts with browser might
look like this:

WebDriver interacts with the browser via the driver in a two-way
communication process:

1. Sends commands (e.g., open a page, click a button) to the browser.

2. Receives responses from the browser. 28

 Setting up Setting up Setting up Setting up
Install the Chrome or FireFox web-browser if you do not have either of
them.

▪ I will use the Chrome.

Install Selenium using pip:

▪ On the Spyder Console, run the following:

▪ pip install selenium

 is a well-documented reference.Selenium with Python

29

https://selenium-python.readthedocs.io/index.html

 Setting up - Setting up - Setting up - Setting up - webdriver.Chrome()
To begin with, we import (1) webdriver from selenium and (2) the
By and Options classes.

▪ webdriver.Chrome() opens the Chrome browser that is being
controlled by automated test software, selenium.

import pandas as pd1
import os, time, random2
from io import StringIO3

4
Import the necessary modules from the Selenium library5
from selenium import webdriver # Main module to control the browser6
from selenium.webdriver.common.by import By # Helps locate elements on the webpage7
from selenium.webdriver.chrome.options import Options # Allows setting browser options8
from selenium.webdriver.support.ui import WebDriverWait9
from selenium.webdriver.support import expected_conditions as EC10
from selenium.common.exceptions import NoSuchElementException11
from selenium.common.exceptions import TimeoutException12
from selenium.common.exceptions import StaleElementReferenceException13

14
15

Set the working directory path16
wd_path = 'ABSOLUTE_PATHNAME_OF_YOUR_WORKING_DIRECTORY' # e.g., '/Users/bchoe/Documents/DANL-210'17

30

 get() Method in WebDriver Method in WebDriver Method in WebDriver Method in WebDriver
get(url) from webdriver opens the specified URL in a web
browser.

When using webdriver in Google Chrome, you may see the message:

▪ “Chrome is being controlled by automated test software.”

form_url = "https://qavbox.github.io/demo/webtable/"1
driver.[?](form_url)2
driver.close()3
driver.quit()4

close() terminates the current browser window.

quit() completely exits the webdriver session, closing a browser
window.

31

 Inspecting a Web ElementInspecting a Web ElementInspecting a Web ElementInspecting a Web Element with with with with
find_element()

Once the Google Chrome window loads with the provided URL, we
need to find specific elements to interact with.

▪ The easiest way to identify elements is by using Developer Tools to
inspect the webpage structure.

To inspect an element:

1. Right-click anywhere on the webpage.

2. Select the Inspect option from the pop-up menu.

3. In the Elements panel, hover over the DOM structure to locate the
desired element.

32

 Inspecting a Web ElementInspecting a Web ElementInspecting a Web ElementInspecting a Web Element with with with with
find_element()

When inspecting an element, look for:

▪ HTML tag (e.g., <input>, <button>, <div>) used for the
element.

▪ Attributes (e.g., id, class, name) that define the element.

▪ Attribute values that help uniquely identify the element.

▪ Page structure to understand how elements are nested within each
other.

33

 Locating Web ElementsLocating Web ElementsLocating Web ElementsLocating Web Elements
by by by by find_element() & & & &
find_elements()

35

 Locating Web Elements by Locating Web Elements by Locating Web Elements by Locating Web Elements by find_element()
There are various strategies to locate elements in a page.

find_element(By.ID, "id")1
find_element(By.CLASS_NAME, "class name")2
find_element(By.NAME, "name")3
find_element(By.CSS_SELECTOR, "css selector")4
find_element(By.TAG_NAME, "tag name")5
find_element(By.LINK_TEXT, "link text")6
find_element(By.PARTIAL_LINK_TEXT, "partial link text")7
find_element(By.XPATH, "xpath")8

Selenium provides the find_element() method to locate elements in
a page.

To find multiple elements (these methods will return a list):

▪ find_elements()

36

find_element(By.ID, "")
find_element(By.ID, "") & find_elements(By.ID, ""):

▪ Return element(s) that match a given ID attribute value.

Example HTML code where an element has an ID attribute form1:

<form id="form1">...</form>1

Example of locating the form using find_element(By.ID, ""):

form = driver.find_element(By.ID, "form1")1
form.text # Retrieves text content if available2

37

find_element(By.CLASS_NAME, "")
find_element(By.CLASS_NAME, "") &
find_elements(By.CLASS_NAME, ""):

▪ Return element(s) matching a specific class attribute.

Example HTML code with a homebtn class:

<div class="homebtn" align="center">...</div>1

home_button = driver.find_element(By.CLASS_NAME, "homebtn")1
home_button.click() # Clicks the home button2
driver.back() # Navigates back to the previous page3

38

find_element(By.NAME, "")
find_element(By.NAME, "") & find_elements(By.NAME,
""):

▪ Return element(s) with a matching name attribute.

Example HTML code with a name attribute home:

<input type="button" class="btn" name="home" value="Home" />1

home_button2 = driver.find_element(By.NAME, "home")1
home_button2.click()2
driver.back()3

39

find_element(By.CSS_SELECTOR, "")
find_element(By.CSS_SELECTOR, "") &
find_elements(By.CSS_SELECTOR, ""):

▪ Locate element(s) using a CSS selector.

Inspect the webpage using browser Developer Tools.

Locate the desired element in the Elements panel.

Right-click and select Copy selector

▪ Let’s find out CSS selector for the Home button.

home_button3 = driver.find_element(By.CSS_SELECTOR, "body > div > a > input")1
home_button3.click()2
driver.back()3

40

find_element(By.TAG_NAME, "")
find_element(By.TAG_NAME, "") &
find_elements(By.TAG_NAME, ""):

▪ Locate element(s) by a specific HTML tag.

table01 = driver.find_element(By.ID, "table01")1
thead = table01.find_element(By.TAG_NAME, "thead")2
thead.text3

41

find_element(By.LINK_TEXT, "")
find_element(By.LINK_TEXT, "") &
find_elements(By.LINK_TEXT, ""):

▪ Locate link(s) using the exact text displayed.

Example HTML for a Selenium link:

Selenium1

selenium_link = driver.find_element(By.LINK_TEXT, "Selenium")1
selenium_link.click()2
driver.back()3

42

find_element(By.PARTIAL_LINK_TEXT, "")
Finds link(s) containing partial text.

Selen_links = driver.find_elements(By.PARTIAL_LINK_TEXT, "qav")1
print(len(Selen_links))2
Selen_links[0].click()3
driver.back()4

43

find_element(By.XPATH, "")
find_element(By.XPATH, "…") and
find_elements(By.XPATH, "…"):

▪ Find element(s) that match the given XPath expression.

▪ find_element(...) returns one matching element (the first
match).

▪ find_elements(...) returns a list of all matching elements.

XPath is a query language for locating nodes in a tree structure.

▪ Web pages are written in HTML, and the browser represents them
as a DOM tree, which XPath can query.

▪ Selenium supports XPath in all major browsers.

▪ XPath is useful when id/name/class selectors are missing,
duplicated, or unstable.

▪ It’s powerful for navigating nested or complex HTML structures. 44

Basic XPath PatternBasic XPath PatternBasic XPath PatternBasic XPath Pattern
//tag_name[@attribute='value']1

// → search anywhere in the document

tag_name → HTML tag name (input, div, span, table, etc.)

@attribute → attribute name (id, class, aria-label, role,
data-*, etc.)

'value' → the attribute’s value (quoted)

45

XPath vs. Full XPathXPath vs. Full XPathXPath vs. Full XPathXPath vs. Full XPath
When you right-click an element in Chrome DevTools → Copy, you often
see:

Copy XPath (often a relative-style XPath)

▪ Typically starts with //...
▪ Tries to find the element using attributes and structure

▪ Usually more flexible if the page layout changes

Copy Full XPath

▪ Typically starts with /html/body/...
▪ A complete path from the root of the document tree

▪ Often fragile: if the page structure changes, it can break easily

In practice: prefer XPath (the shorter one) over Full XPath when possible.

46

Example: Finding the 2nd Table with XPathExample: Finding the 2nd Table with XPathExample: Finding the 2nd Table with XPathExample: Finding the 2nd Table with XPath
Suppose we want the second <table> on a page, but the tables have
no unique id or class.

Using find_element(By.TAG_NAME, "table") is too vague
because it returns only the first table.

XPath can target the second one:

second table on the page:1
second_table = driver.find_element(By.XPATH, "(//table)[2]")2

47

 Extracting XPath from Developer Tools Extracting XPath from Developer Tools Extracting XPath from Developer Tools Extracting XPath from Developer Tools
Inspect the webpage using browser Developer Tools.

Locate the desired element in the Elements panel.

Right-click and select Copy XPath.

Example extracted XPath:

//*[@id="table02"]/tbody/tr[1]/td[1]1
/html/body/form/fieldset/div/div/table/tbody/tr[1]/td[1]2

48

 Example: Finding an Element Using XPath Example: Finding an Element Using XPath Example: Finding an Element Using XPath Example: Finding an Element Using XPath
Locate “Tiger Nixon” in the second table:

elt = driver.find_element(By.XPATH, '//*[@id="table02"]/tbody/tr[1]/td[1]')1
print(elt.text) # Output the extracted text2

49

When to Use XPathWhen to Use XPathWhen to Use XPathWhen to Use XPath
Use XPath when:

▪ The element lacks a unique ID or class.

▪ Other locator methods (By.ID, By.CLASS_NAME, etc.) don’t
work.

Limitations:

▪ XPath can be less efficient than ID-based locators.

▪ Page structure changes may break XPath-based automation.

For our tasks, however, XPath remains a reliable and effective method!

50

Web-scrapping with Python Web-scrapping with Python Web-scrapping with Python Web-scrapping with Python selenium

Let’s do !Classwork 4

51

https://bcdanl.github.io/210/danl-cw/danl-210-cw-04.html

 Retrieving Attribute Values with Retrieving Attribute Values with Retrieving Attribute Values with Retrieving Attribute Values with
get_attribute()

HTML Example

get_attribute() extracts an element’s attribute value.

Useful for retrieving hidden properties not visible on the page.

Selenium1
<input id="btn" class="btn" type="button" onclick="change_text(this)" value="Delete">2

Python Example
driver.find_element(By.XPATH, '//*[@id="table01"]/tbody/tr[2]/td[3]/a').get_attribute('href')1
driver.find_element(By.XPATH, '//*[@id="btn"]').get_attribute('value')2

52

 NoSuchElementException and and and and try-
except blocks blocks blocks blocks

try:1
 elem = driver.find_element(By.XPATH, "element_xpath")2
 elem.click()3
except:4
 pass5

When a web element is not found, it throws the
NoSuchElementException.

▪ try-except can be used to avoid the termination of the selenium
code.

This solution is to address the inconsistency in the DOM among the
seemingly same pages.

53

 WebDriverWait

55

 Two different “waits” Two different “waits” Two different “waits” Two different “waits”
Pause to respect servers (politeness):

▪ Use time.sleep(random.uniform(a, b)) as a small
human-like delay between actions/pages.

▪ This helps avoid hammering a website with rapid-fire requests.

▪ Use time.sleep(random.uniform()) for politeness (respect
servers).

Wait for the page to be ready (robustness):

▪ Use WebDriverWait() + a condition (presence/clickable).

▪ This prevents flaky failures on slow networks or busy sites.

▪ Use WebDriverWait() for robustness (wait for conditions).

Best practice: Use both—WebDriverWait for robustness, and small randomized sleeps
for politeness.

56

 Polite Scraping: Randomized Pauses with Polite Scraping: Randomized Pauses with Polite Scraping: Randomized Pauses with Polite Scraping: Randomized Pauses with
time.sleep(random.uniform())

import time, random1
2

Example: polite delay between actions/pages3
time.sleep(random.uniform(0.5, 1.5)) # small jitter (adjust as needed)4

After each page load, click, or data extraction, add a small randomized
pause.

This is not about “waiting for the DOM”—it is about respecting servers
and reducing bursty traffic.

57

Web-scrapping with Python Web-scrapping with Python Web-scrapping with Python Web-scrapping with Python selenium

Let’s do !Classwork 5

58

https://bcdanl.github.io/210/danl-cw/danl-210-cw-05.html

 Why Why Why Why time.sleep() Alone is Not Robust Alone is Not Robust Alone is Not Robust Alone is Not Robust
import time1

2
url = "https://qavbox.github.io/demo/delay/"3
driver.get(url)4

5
driver.find_element(By.XPATH, '//*[@id="one"]/input').click()6

7
time.sleep(2) # blind wait: always 2 seconds8

9
element = driver.find_element(By.XPATH, '//*[@id="two"]')10
element.text11

time.sleep() is a blind wait:

▪ If content loads faster, you waste time.

▪ If content loads slower, your code may crash (element not found).

For reliable automation/scraping, use condition-based waits.

59

 Robust Wait for Presence (exists in DOM) Robust Wait for Presence (exists in DOM) Robust Wait for Presence (exists in DOM) Robust Wait for Presence (exists in DOM)
with with with with WebDriverWait() + + + +
expected_conditions

driver.get("https://qavbox.github.io/demo/delay/")1
driver.find_element(By.XPATH, '//*[@id="one"]/input').click()2

3
try:4
 element = WebDriverWait(driver, 10).until(5
 EC.presence_of_element_located((By.XPATH, '//*[@id="two"]'))6
)7
 print(element.text)8
except TimeoutException:9
 print("Timed out: element did not appear within 10 seconds.")10

Good when the element is added to the DOM but might not be visible
yet.

60

 Robust Wait for Clickable (Visible + Enabled) Robust Wait for Clickable (Visible + Enabled) Robust Wait for Clickable (Visible + Enabled) Robust Wait for Clickable (Visible + Enabled)
with with with with WebDriverWait() + + + +
expected_conditions

btn = WebDriverWait(driver, 10).until(1
 EC.element_to_be_clickable((By.XPATH, '//*[@id="one"]/input'))2
)3
btn.click()4

Best when you want to click reliably.

61

 A Common Pattern (Robust + Polite) A Common Pattern (Robust + Polite) A Common Pattern (Robust + Polite) A Common Pattern (Robust + Polite)
Robust: wait until the table is present1
table = WebDriverWait(driver, 10).until(2
 EC.presence_of_element_located((By.TAG_NAME, "table"))3
)4

5
Extract something...6
html = table.get_attribute("outerHTML")7

8
Polite: pause before the next request/action9
time.sleep(random.uniform(1, 3))10

62

 Selenium withSelenium withSelenium withSelenium with
pd.read_html() for Table for Table for Table for Table
ScrappingScrappingScrappingScrapping

64

Selenium with Selenium with Selenium with Selenium with pd.read_html() for Table for Table for Table for Table
ScrappingScrappingScrappingScrapping

Yahoo! Finance has probably renewed its database system, so that
yfinance does not work now.

 uses web table to display historical data about a
company’s stock.
Yahoo! Finance

Let’s use Selenium with pd.read_html() to collect stock price data!

65

https://finance.yahoo.com/quote/NVDA/history/?p=NVDA&period1=1672531200&period2=1772323200

 Selenium with Selenium with Selenium with Selenium with pd.read_html() for Yahoo! for Yahoo! for Yahoo! for Yahoo!
Finance DataFinance DataFinance DataFinance Data

Load content page1
url = 'https://finance.yahoo.com/quote/MSFT/history/?p=MSFT&period1=1672531200&period2=1772323200'2
driver.get(url)3
time.sleep(random.uniform(3, 5)) # wait for table to load4

period1 and period2 values for Yahoo Finance URLs uses Unix
timestamps (number of seconds since January 1, 1970),

▪ 1672531200 → 2023-01-01

▪ 1772323200 → 2026-03-01

66

 get_attribute("outerHTML")
Extract the <table> HTML element1
table_html = driver.find_element(By.TAG_NAME, 'table').get_attribute("outerHTML")2

3
Parse the HTML table into a pandas DataFrame4
df = pd.read_html(StringIO(table_html))[0]5

StringIO turns that string into a file-like object, which is what
pd.read_json() expects moving forward.

.get_attribute("outerHTML"): gets the entire HTML from the
WebElement.

67

Web-scrapping with Python Web-scrapping with Python Web-scrapping with Python Web-scrapping with Python selenium

Let’s do !Classwork 6

68

https://bcdanl.github.io/210/danl-cw/danl-210-cw-06.html

