
Lecture 2
Python Fundamentals

Byeong-Hak Choe

SUNY Geneseo

January 23, 2026

bchoe@geneseo.edu

1

mailto:bchoe@geneseo.edu

Python BasicsPython BasicsPython BasicsPython Basics

3

Values, Variables, and Data TypesValues, Variables, and Data TypesValues, Variables, and Data TypesValues, Variables, and Data Types

A value is a literal such as a number or text.

Examples of values:

▪ 352.3 → float

▪ 22 → int

▪ "Hello World!" → str

4

VariablesVariablesVariablesVariables
a = 71
print(a)2

A variable is a name that refers to
a value.

Think of a variable like a label
attached to a value.

▪ A variable is just a name (not
the value itself).

5

ObjectsObjectsObjectsObjects
Sometimes you will hear variables referred to as objects.

Everything that is not a literal (like 10) is an object in Python.

6

Assignment (Assignment (Assignment (Assignment (=))))
Here we assign the integer value 5 to the variable x.1
x = 5 2

3
Now we can use the variable x in the next line.4
y = x + 12 5
y6

In Python, = means assignment:

▪ Right side is evaluated first

▪ The result is assigned to the left side

 In math, = often means “equal.”
 In Python, = means “store this value in the variable.”

Note

7

 Code and comment style Code and comment style Code and comment style Code and comment style
Two guiding principles:

▪ Make things easy for your future self

▪ Assume you will forget details later → write it down now

In Python, the comment character is #

▪ Anything after # is ignored by the interpreter

▪ Put comments right above the code they describe

Use Markdown/text cells to explain:

▪ What the code cell is doing,

▪ Any assumptions/choices,

▪ How to interpret output.

8

 Most Useful Google Colab Shortcuts Most Useful Google Colab Shortcuts Most Useful Google Colab Shortcuts Most Useful Google Colab Shortcuts

Windows

Ctrl + Enter: Run cell

Alt + Enter: Run cell and add new
cell below

Ctrl + /: Comment current line

Ctrl + Z: Undo

Ctrl + Shift + Z: Redo

Shift + : Select text

Shift + Ctrl + : Select to
the beginning/end of the line

Mac

command + return: Run cell

option + return: Run cell and add
new cell below

command + /: Comment current
line

command + Z: Undo

command + shift + Z: Redo

shift + : Select text

shift + command + :
Select to the beginning/end of the
line

9

TypesTypesTypesTypes

The Type column shows Python’s official type name.

Mutable?

▪ mutable → can be changed after creation

▪ immutable → cannot be changed after creation 10

One List, Many TypesOne List, Many TypesOne List, Many TypesOne List, Many Types
list_example = [10, 1.23, "like this", True, None]1
print(list_example)2
type(list_example)3

Common built-in types:

▪ int (e.g., 10)

▪ float (e.g., 1.23)

▪ str (e.g., "hello")

▪ bool (e.g., True)

▪ NoneType (e.g., None)

A list can contain mixed types.

11

Square Brackets Square Brackets Square Brackets Square Brackets [] in Python in Python in Python in Python

Use [] to create a list

Use [] to access an element by index

vector = ['a', 'b']1
vector[0]2

12

Curly Braces Curly Braces Curly Braces Curly Braces {} in Python in Python in Python in Python

{} is used to denote a set or a dictionary

Use {} for sets and dictionaries

{'a', 'b'} # set1
{'first_letter': 'a', 'second_letter': 'b'} # dictionary (key:value pairs)2

13

Parentheses Parentheses Parentheses Parentheses () in Python in Python in Python in Python

Use () for tuples

Use () to pass arguments into functions

num_tup = (1, 2, 3)1
sum(num_tup)2

14

 Data Containers in Python—List and Tuple Data Containers in Python—List and Tuple Data Containers in Python—List and Tuple Data Containers in Python—List and Tuple
 List

Stores multiple values in an ordered sequence

 Mutable: You can change it after creation

 Tuple

Stores multiple values in an ordered sequence

 Immutable: Cannot be changed after creation

fruits = ["apple", "banana", "orange"]1
fruits.append("grape")2
fruits[0] = "pear"3

geneseo_coords = (40.7158, 77.8136)1
geneseo_coords[0] # reading is OK2
geneseo_coords[0] = 100 # cannot modify3

15

 Data Containers in Python—Dictionaries Data Containers in Python—Dictionaries Data Containers in Python—Dictionaries Data Containers in Python—Dictionaries
city_to_temp = {1
 "Paris": 28,2
 "London": 22,3
 "New York": 18,4
 "Seoul": 29,5
 "Rochester": 106
}7

8
city_to_temp["Paris"] # look up a value by key9
city_to_temp["London"] = 32 # update a value10

11
city_to_temp.keys() # all keys12
city_to_temp.values() # all values13
city_to_temp.items() # (key, value) pairs14

Stores values as key→value pairs

Keys are used for fast lookup

Useful when you want to create associations (“mapping”)

16

Running on EmptyRunning on EmptyRunning on EmptyRunning on Empty
lst = []1
tup = ()2
dic = {}3

Being able to create empty containers is sometimes useful, especially
when using loops (e.g., for, while).

Q. What is the type of an empty list?

17

Operators Operators Operators Operators
All of the basic operators we see
in mathematics are available to
use:

▪ + add

▪ - subtract

▪ * multiply

▪ ** power

▪ / divide

▪ // integer divide (floor
division)

▪ % remainder

a = 101
b = 32

3
a + b4
a - b5
a * b6
a ** b7
a / b8
a // b9
a % b10

18

Operators Also Work for Lists and StringsOperators Also Work for Lists and StringsOperators Also Work for Lists and StringsOperators Also Work for Lists and Strings

+ concatenates (joins) strings

* repeats a string multiple times

+ concatenates (combines) lists
into a longer list

string_one = "This is an example "1
string_two = "of string concatenation"2
string_full = string_one + string_two3
print(string_full)4

5
string = "apples, "6
print(string * 3)7

list_one = ["apples", "oranges"]1
list_two = ["pears", "satsumas"]2
list_full = list_one + list_two3
print(list_full)4

19

Casting VariablesCasting VariablesCasting VariablesCasting Variables
orig_number = 4.398984981
type(orig_number)2

mod_number = int(orig_number)1
mod_number2
type(mod_number)3

Casting changes type using built-in functions:

▪ int(), float(), str()
▪ If we try these, Python will do its best to interpret the input and

convert it to the output type we’d like and, if they can’t, the code
will throw a great big error.

Q. Classwork 2.1

20

http://localhost:4469/danl-cw/danl-210-cw-02.html#question-1

 Booleans, Conditions,Booleans, Conditions,Booleans, Conditions,Booleans, Conditions,
and and and and if Statements Statements Statements Statements

22

BooleansBooleansBooleansBooleans

Boolean values are either:

▪ True
▪ False

10 == 201
10 == '10'2

In Python, Booleans can be
converted to integers:

▪ int(True) is 1

▪ int(False) is 0

int(True)1
int(False)2

23

Boolean OperatorsBoolean OperatorsBoolean OperatorsBoolean Operators

Here, both x and y are boolean.

Operator Description

x and y True only if both are True

x or y True if at least one is True

not x Flips True ↔ False

Existing booleans can be combined by a boolean operator, which create
a boolean when executed.

24

 Comparison Operators Comparison Operators Comparison Operators Comparison Operators

Here, both x and y are variables.

Operator Description

x == y equal

x != y not equal

x > y greater than

x >= y greater than or equal to

x < y less than

x <= y less than or equal to

25

 The Equality Operator The Equality Operator The Equality Operator The Equality Operator ==
boolean_condition1 = 10 == 201
boolean_condition2 = 10 == '10'2

The == is an operator that compares the objects on either side and
returns True if they have the same values

Q. What does not (not True) evaluate to?

Q. Classwork 2.2

26

http://localhost:4469/danl-cw/danl-210-cw-02.html#question-2

Conditions Conditions Conditions Conditions →→→→ Boolean Expressions Boolean Expressions Boolean Expressions Boolean Expressions
x = 101

2
print(x > 5) # True3
print(x == 3) # False4
print(x != 0) # True5

A condition is an expression that returns True or False.

27

 Condition and Condition and Condition and Condition and if Statements Statements Statements Statements
name = "Geneseo"1
score = 992

3
if name == "Geneseo" and score > 90:4
 print("Geneseo, you achieved a high score.")5

6
if name == "Geneseo" or score > 90:7
 print("You could be called Geneseo or have a high score")8

9
if name != "Geneseo" and score > 90:10
 print("You are not called Geneseo and you have a high score")11

The real power of conditions comes when we start to use them in more
complex examples, such as if statements.

28

The The The The in Keyword: Membership Test Keyword: Membership Test Keyword: Membership Test Keyword: Membership Test
name_list = ["Lovelace", "Smith", "Hopper", "Babbage"]1

2
"Lovelace" in name_list3
"Bob" in name_list4

in checks whether something exists inside a list, string, etc.

Q. Check if “a” is in the string “Wilson Ice Arena” using in. Is “a” in
“Anyone”?

29

if-else Chain Chain Chain Chain
score = 981

2
if score == 100:3
 print("Top marks!")4
elif score > 90 and score < 100:5
 print("High score!")6
elif score > 10 and score <= 90:7
 pass8
else:9
 print("Better luck next time.")10

30

if Statements with Statements with Statements with Statements with in
fruits = ["apple", "banana", "cherry"]1

2
favorite = "banana"3

4
if favorite in fruits:5
 print(f"{favorite} is available!")6
else:7
 print(f"{favorite} is not in the list.")8

The keyword in lets you check whether a value is present in a list,
string, or other iterable.

This works seamlessly inside an if-else structure.

Useful for membership tests such as:

▪ Validating if a company is in a stock list

▪ Seeing if a word exists in a sentence

31

f-Strings (Formatted Strings) in Pythonf-Strings (Formatted Strings) in Pythonf-Strings (Formatted Strings) in Pythonf-Strings (Formatted Strings) in Python

An f-string is a convenient way to create strings that include variable values
directly inside the text.

 Key idea: Put an f before the quotation marks, then use {} to insert
variables.

name = "Ada"1
age = 202

3
message = f"My name is {name} and I am {age} years old."4
print(message)5

32

IndentationIndentationIndentationIndentation

In Python, indentation is required for code blocks, such as code inside:

▪ a user-defined function (def ...),

▪ a conditional (if / elif / else),

▪ a loop (for / while).

Indentation is how Python knows which lines belong to a block.
It tells the interpreter what should run inside the block (e.g., inside an
if) and what should run after the block ends.

Standard Python style is 4 spaces per indentation level.

▪ In Google Colab, you might see 2 spaces.

x = 101
2

if x > 2:3
 print("x is greater than 2")4

Q. Classwork 2.3 33

http://localhost:4469/danl-cw/danl-210-cw-02.html#question-3

 Slicing Methods withSlicing Methods withSlicing Methods withSlicing Methods with
Strings and ListsStrings and ListsStrings and ListsStrings and Lists

35

 Slicing Methods Slicing Methods Slicing Methods Slicing Methods

Slicing methods can apply for strings, lists, and DataFrames.

With slicing methods, we can get a subset of the data object.

Python is:

▪ zero-indexed (things start counting from 0)

▪ left inclusive

▪ right exclusive when we specify a range

36

 Slicing Patterns Slicing Patterns Slicing Patterns Slicing Patterns
letters = "abcdefghij"1

2
letters[:] # whole string3
letters[3:] # from index 3 to end4
letters[:5] # from start to index 45
letters[:-4] # take the last 4 characters6
letters[2:7] # index 2 to 67
letters[::2] # step size 28
letters[::-1] # reverse9

Slice format: [start : end :
step]
▪ start is included

▪ end is excluded

▪ step controls how many
characters to skip

 Important (when you “skip” numbers)
If you omit start or end, Python fills them in automatically:

▪ If start is missing → slicing starts from the beginning

▪ If end is missing → slicing goes to the end

▪ Example: letters[::2] means “from the beginning to the end,
taking every 2nd character.”

37

 Length of a String and a List Length of a String and a List Length of a String and a List Length of a String and a List
string = "cheesecake"1
len(string)2

list_of_numbers = [1, 2, 3, 4, 5]1
len(list_of_numbers)2

Both strings and list objects support len()
len() tells you how many items/characters are stored

38

 Slicing with Lists Slicing with Lists Slicing with Lists Slicing with Lists
list_example = ['one', 'two', 'three']1
list_example[0 : 1]2
list_example[1 : 3]3

Python is

▪ a zero-indexed language (things start counting from zero);

▪ left inclusive;

▪ right exclusive when we are specifying a range of values.

39

 Slicing with Lists Slicing with Lists Slicing with Lists Slicing with Lists

We can think of items in a list-like object as being fenced in.

▪ The index represents the fence post.

40

 Get an Item by Get an Item by Get an Item by Get an Item by [index]
suny = ['Geneseo', 'Brockport', 'Oswego', 'Binghamton', 1
 'Stony Brook', 'New Paltz'] 2

suny[0]1
suny[1]2
suny[2]3
suny[7]4

suny[-1]1
suny[-2]2
suny[-3]3
suny[-7]4

41

 Get an Item with a Slice Get an Item with a Slice Get an Item with a Slice Get an Item with a Slice
suny = ['Geneseo', 'Brockport', 'Oswego', 'Binghamton', 1
 'Stony Brook', 'New Paltz'] 2
suny[0:2] # A slice of a list is also a list.3

suny[: : 2]1
suny[: : -2]2
suny[: : -1]3

suny[4 :]1
suny[-6 :]2
suny[-6 : -2]3
suny[-6 : -4]4

Q. Classwork 2.4

42

http://localhost:4469/danl-cw/danl-210-cw-02.html#question-4

 Functions, Arguments,Functions, Arguments,Functions, Arguments,Functions, Arguments,
and Parametersand Parametersand Parametersand Parameters

44

 Functions Functions Functions Functions

Common built-in functions you will use often:

type() → data type

len() → length

max() → largest value

sum() → total

int("20") 1
float("14.3")2
str(5)3
int("xyz")4
print("DANL 210")5

lst = [1,2,3,4]1
2

type(lst)3
len(lst) 4
max(lst)5
sum(lst)6

A function can take inputs (called arguments) and return an output.

Python also lets you define your own functions with the def keyword.

Later, we will use such user-defined function together with pandas.

45

 Functions, Arguments, and Parameters Functions, Arguments, and Parameters Functions, Arguments, and Parameters Functions, Arguments, and Parameters
print("Cherry", "Strawberry", "Key Lime")1
print("Cherry", "Strawberry", "Key Lime", sep = "!")2
print("Cherry", "Strawberry", "Key Lime", sep=" ")3

To call a function, write its name followed by parentheses:

▪ function_name(...)
Inside the parentheses, you provide arguments (inputs), separated by
commas.

A parameter is the name used in the function definition for an expected
input

▪ Example: sep is a parameter of print().

A default argument is the value used automatically if you do not specify
it.

▪ For print(), the default separator is a space: sep = " ".

Q. Classwork 2.5 46

http://localhost:4469/danl-cw/danl-210-cw-02.html#question-5

 Loop with Loop with Loop with Loop with while and and and and
for

48

= Updating a Variable with = Updating a Variable with = Updating a Variable with = Updating a Variable with +=
count = 11
count += 12
print(count)3

count = 11
count = count + 12
print(count)3

+= is a shortcut assignment operator

It means: take the current value and add something to it

E.g.,: count += 1 means the same thing as count = count + 1.

49

 Repeat with Repeat with Repeat with Repeat with while
How this loop workscount = 1 1

while count <= 5:2
 print(count)3
 count += 14

1. Start with count = 1.

2. Check the condition: count <= 5
If it is True, run the loop body.

3. Print the current value of count.

4. Update count using count += 1.

5. Go back to step 2 and repeat.

6. The loop stops when count <= 5
becomes False.

50

 Asking the user for input Asking the user for input Asking the user for input Asking the user for input
stuff = input()1
Type something and press Return/Enter on Python Console 2
before running print(stuff)3
print(stuff)4

input() pauses the program and waits for the user to type something.

Whatever the user types is returned as a string.

This is useful when you want to make your code interactive.

51

 Cancel an InVnite Loop with Cancel an InVnite Loop with Cancel an InVnite Loop with Cancel an InVnite Loop with break
while True:1
 user_input = input("Enter 'yes' to continue or 'no' to stop: ")2
 if user_input.lower() == 'no':3
 print("Exiting the loop. Goodbye!")4
 break5
 elif user_input.lower() == 'yes':6
 print("You chose to continue.")7
 else:8
 print("Invalid input, please enter 'yes' or 'no'.")9

While loop is used to execute a block of code repeatedly until given
boolean condition evaluated to False.

▪ while True creates an infinite loop

The loop runs forever unless you stop it using break
break exits the loop immediately

52

 Skip Ahead with Skip Ahead with Skip Ahead with Skip Ahead with continue
while True:1
 value = input("Integer, please [q to quit]: ")2
 if value == 'q': # quit3
 break4
 number = int(value)5
 if number % 2 == 0: # an even number6
 continue7
 print(number, "squared is", number*number)8

continue skips the rest of the loop body for the current iteration

Then Python jumps back to the top of the loop

53

 Iterate with Iterate with Iterate with Iterate with for and and and and in
Use a for loop when you want to go through each item in:

▪ a string

▪ a list

▪ a range (range())

▪ or any iterable object

54

 Repeat with a Repeat with a Repeat with a Repeat with a for Loop Loop Loop Loop
for loop syntax (the pattern)

How this loop works

for <item_name> in <iterable>:1
 <indented code block using <item_name>>2

lst_nums = [0, 1, 2, 3, 4]1
2

for num in lst_nums:3
 print(num)4

1. Take the first item in lst_nums → set num = 0 → run print(num)
2. Take the next item → set num = 1 → run print(num)
3. Repeat for 2, 3, 4
4. Stop after the last item

55

Two Ways to Loop Through an IterableTwo Ways to Loop Through an IterableTwo Ways to Loop Through an IterableTwo Ways to Loop Through an Iterable
while approach for approach

word = 'thud'1
offset = 02
while offset < len(word):3
 print(word[offset])4
 offset += 15

word = 'thud'1
for letter in word:2
 print(letter)3

Which one do you prefer?

Q. Classwork 2.6

56

http://localhost:4469/danl-cw/danl-210-cw-02.html#question-6

 Generate Number Sequences with Generate Number Sequences with Generate Number Sequences with Generate Number Sequences with range()
list(range(1, 4))1
list(range(0, 4))2
list(range(4))3
list(range(0, 4, 2))4

5
for x in range(0, 4):6
 print(x)7

range() creates a sequence of
integers without storing a full list

This is memory-efficient and very
common in for loops

Syntax is similar to slicing:

range(start, stop, step)

▪ start defaults to 0

▪ step defaults to 1

▪ the sequence stops right before stop

57

 Get Index + Value with Get Index + Value with Get Index + Value with Get Index + Value with enumerate()
fruits = ["apple", "banana", "orange"]1

2
default: starts counting at 03
for i, fruit in enumerate(fruits):4
 print(i, fruit)5

6
start counting at 17
for i, fruit in enumerate(fruits, start=1):8
 print(i, fruit)9

enumerate() gives you
two things while looping:

▪ the index (i)

▪ the value (fruit)

Very handy when you want to label, number, or track positions.

Syntax: enumerate(iterable, start=0)

▪ iterable can be a list, tuple, string, etc.

▪ start controls the first index (default is 0)

58

 Cancel a Cancel a Cancel a Cancel a for Loop with Loop with Loop with Loop with break
word = 'thud'1
for letter in word:2
 if letter == 'u':3
 break4
 print(letter)5

break exits the loop immediately

59

 Skip in a Skip in a Skip in a Skip in a for Loop with Loop with Loop with Loop with continue
word = 'thud'1
for letter in word:2
 if letter == 'u':3
 continue4
 print(letter)5

continue skips the current iteration and moves to the next one

60

 Loop Control: Loop Control: Loop Control: Loop Control: continue, , , , pass, , , , break
for num in range(1, 6):1

2
 if num == 2:3
 continue # skip printing 24

5
 if num == 3:6
 pass # do nothing, move on7

8
 if num == 4:9
 break # exit the loop10

11
 print(num)12

continue → skips to the next iteration

pass → does nothing (useful as a placeholder)

break → exits the loop completely

Q. Classwork 2.7

61

http://localhost:4469/danl-cw/danl-210-cw-02.html#question-7

 List and DictionaryList and DictionaryList and DictionaryList and Dictionary
ComprehensionsComprehensionsComprehensionsComprehensions

63

 What is List Comprehension? What is List Comprehension? What is List Comprehension? What is List Comprehension?
A concise way to create or modify lists.

Syntax: [expression for item in iterable if condition]

1. Creating a List of Squares:

2. Filtering Items:

squares = [x**2 for x in range(5)]1

numbers = [1, 2, 3, 4, 5, 6]1
evens = [x for x in numbers if x != 2]2

64

 What is Dictionary Comprehension? What is Dictionary Comprehension? What is Dictionary Comprehension? What is Dictionary Comprehension?
A concise way to create or modify dictionaries.

Syntax: { key_expression : value_expression for item in iterable if
condition}

1. Creating a Dictionary of Squares:

2. Filtering Dictionary Items:

3. Swapping Keys and Values:

squares_dict = {x: x**2 for x in range(5)}1

my_dict = {'a': 1, 'b': 2, 'c': 3, 'd': 4}1
filtered_dict = {k: v for k, v in my_dict.items() if v != 2}2

original_dict = {'a': 1, 'b': 2, 'c': 3}1
swapped_dict = {v: k for k, v in original_dict.items()}2

65

 Modifying Lists andModifying Lists andModifying Lists andModifying Lists and
DictionariesDictionariesDictionariesDictionaries

67

The The The The . (dot) Operator on an (dot) Operator on an (dot) Operator on an (dot) Operator on an ObjectObjectObjectObject
text = "GeNeSeO"1

2
print(text.lower()) # method on a string object3
print(text.upper()) # another string method4

In Python, the dot operator (.) means:
“go inside this thing and access one of its members.”

Many data types come with built-in methods you can call using the dot
operator.

Example: For strings, .lower() is a method that returns a lowercase
version of the string.

 Here, text is a string object, and text.lower() means:
“use the lower() method that belongs to the string type.”

68

 Adding an Item to a List Adding an Item to a List Adding an Item to a List Adding an Item to a List
append(): Adds an item to the end of the list.

my_list = [1, 2, 3]1
my_list.append(4)2

69

 Deleting Items in a List Deleting Items in a List Deleting Items in a List Deleting Items in a List
remove(): Deletes the first occurrence of value in the list.

List Comprehension: Removes items based on a condition.

del statement: Deletes an item by index or a slice of items.

my_list = [1, 2, 3, 4, 2]1
my_list.remove(2)2

my_list = [1, 2, 3, 4, 2]1
my_list = [x for x in my_list if x != 2] 2

my_list = [1, 2, 3, 4]1
del my_list[1] 2
del my_list[1:3]3

70

 Adding/Updating Items in a Dictionary Adding/Updating Items in a Dictionary Adding/Updating Items in a Dictionary Adding/Updating Items in a Dictionary
update(): Adds new key-value pairs or updates existing ones.

my_dict = {'a': 1, 'b': 2}1
my_dict.update({'c': 3}) 2
my_dict.update({'a': 10}) 3
my_dict.update({'e': -1, 'f': 0}) 4

71

 Deleting Items in a Dictionary Deleting Items in a Dictionary Deleting Items in a Dictionary Deleting Items in a Dictionary
Dictionary Comprehension: Removes items based on a condition.

del statement: Deletes an item by key.

my_dict = {'a': 1, 'b': 2, 'c': 3}1
my_dict = {k: v for k, v in my_dict.items() if v != 2} 2

my_dict = {'a': 1, 'b': 2, 'c': 3}1
del my_dict['b'] 2

Q. Classwork 2.8

72

http://localhost:4469/danl-cw/danl-210-cw-02.html#question-8

 Handle Errors with Handle Errors with Handle Errors with Handle Errors with try
and and and and except

74

 Errors Errors Errors Errors
short_list = [1, 2, 3]1
positions = [0, 1, 5, 2] # 5 is out of range2

3
for i in positions:4
 print(short_list[i])5

If we don’t write our own exception handler, Python will:

▪ print an error message (a traceback) explaining what went wrong,
and

▪ stop the program.

75

 Exception Handlers (Why we need them) Exception Handlers (Why we need them) Exception Handlers (Why we need them) Exception Handlers (Why we need them)
In Python, when something goes wrong, an exception is raised.

If we’re running code that might fail, we can add an exception handler
so the program can respond nicely instead of crashing.

Common examples:

▪ Using an index that’s out of range for a list/tuple

▪ Looking up a key that doesn’t exist in a dictionary

76

 Handle Errors with Handle Errors with Handle Errors with Handle Errors with try and and and and except
short_list = [1, 2, 3]1
positions = [0, 1, 5, 2] # 5 is out of range2

3
for i in positions:4
 try:5
 print(short_list[i])6
 except:7
 print("Index error:", i, "is not between 0 and", len(short_list) - 1)8

Use try to run code that might fail, and except to handle the error
gracefully.

▪ If an error occurs, Python raises an exception and runs the except
block.

▪ If no error occurs, Python skips the except block.

Q. Classwork 2.9

77

http://localhost:4469/danl-cw/danl-210-cw-02.html#question-9

 Importing andImporting andImporting andImporting and
Installing Modules,Installing Modules,Installing Modules,Installing Modules,
Packages, and LibrariesPackages, and LibrariesPackages, and LibrariesPackages, and Libraries

79

 Importing Modules, Packages, and Libraries Importing Modules, Packages, and Libraries Importing Modules, Packages, and Libraries Importing Modules, Packages, and Libraries
Python is a general-purpose programming language and is not
specialized for numerical or statistical computation.

The core libraries that enable Python to store and analyze data
efficiently are:

▪ pandas
▪ numpy

80

 pandas

pandas provides Series and DataFrames which are used to store
data in an easy-to-use format.

81

 numpy

numpy, numerical Python, provides the array block (np.array()) for
doing fast and efficient computations;

82

 import statement statement statement statement
A module is basically a bunch of related codes saved in a file with the
extension .py.

A package is basically a directory of a collection of modules.

A library is a collection of packages

We refer to code of other module/package/library by using the Python
import statement.

This makes the code and variables in the imported module available to
our programming codes.

import LIBRARY_NAME1

83

 import statement with statement with statement with statement with as or or or or from

Keyword as

We can use the as keyword when
importing the
module/package/library using its
canonical names.

Keyword from

We can use the from keyword
when specifying Python
module/package/library from
which we want to import
something.

import LIBRARY as SOMETHING_SHORT1

from LIBRARY import FUNCTION, PACKAGE, MODULE1

84

 pip tool tool tool tool
To install a library LIBRARY on
your Google Colab, run:

To install a library LIBRARY on
your Anaconda Python, open your
Spyder IDE, Anaconda Prompt, or
Terminal and run:

!pip install LIBRARY1

pip install LIBRARY1

85

 The The The The . (dot) Operator on a Library (dot) Operator on a Library (dot) Operator on a Library (dot) Operator on a Library
In Python, the dot operator (.) means:
“go inside this thing and access one of its members.”

▪ module.name → access something defined inside the module

▪ object.attribute or object.method() → access a
property or function of an object

86

Example 1: Example 1: Example 1: Example 1: import sys

 Here, sys is a module, and sys.version and sys.path are things
inside the sys module.

import sys1
2

print(sys.version) # attribute: Python version info3
print(sys.path) # attribute: module search paths4

87

Example 2: Example 2: Example 2: Example 2: import datetime
import datetime1

2
now = datetime.datetime.now() # module.class.method()3
today = datetime.date.today() # module.class.method()4

datetime (left side) is the module

datetime.datetime is a class inside the module

.now() is a method you can call from that class

A class is a blueprint for creating objects that bundles attributes and
methods together.

88

Common Patterns to RememberCommon Patterns to RememberCommon Patterns to RememberCommon Patterns to Remember

Read it like:Read it like:Read it like:Read it like:

module.something
module.class_name.method_name()

object.method_name()

“start with the thing on the left → use . to reach something inside →
then (maybe) call it with ()”

Q. Classwork 2.10

89

http://localhost:4469/danl-cw/danl-210-cw-02.html#question-10

