Lecture 2

Python Fundamentals

Byeong-Hak Choe

bchoe@geneseo.edu

SUNY CGeneseo

January 23, 2026

mailto:bchoe@geneseo.edu

Python Basics

Values, Variables, and Data Types

un

a

» A value is a literal such as a number or text.
» Examples of values:

= 352.3 - float

= 22 —int

= "Hello World!" — str

Variables

a =717

print(a)

o A variable is a name that refers to
a value.

o Think of a variable like a label
attached to a value.

7
@ = A variable is just a name (not
/ the value itself).

Objects

» Sometimes you will hear variables referred to as objects.

» Everything that is not a literal (like 10) is an object in Python.

Assignment (=)

Here we assign the integer value 5 to the variable x.

x =5

Now we can use the variable x in the next line.
y = x + 12
Yy

¢ In Python, = means assignment:
= Right side is evaluated first

= The result is assigned to the left side

Note

In math, = often means “equal.”
In Python, = means “store this value in the variable.”

4.~ Code and comment style

» Two guiding principles:
Make things easy for your future self

Assume you will forget details later = write it down now

* In Python, the comment character is #
Anything after # is ignored by the interpreter

Put comments right above the code they describe

» Use Markdown/text cells to explain:
What the code cell is doing,
Any assumptions/choices,

How to interpret output.

= Most Useful Google Colab Shortcuts

Windows

o Alt + Enter: Run cell and add new

Ctrl + Enter: Run cell

cell below

Ctrl + /: Comment current line
Ctrl + Z: Undo

Ctrl + Shift + Z: Redo

Shift + LJEIEILd: Select text

Shift + Ctrl + LIIIET: Select to
the beginning/end of the line

Mac

command + return: Run cell

option + return: Run cell and add
new cell below

command + /: Comment current
line

command + Z: Undo

command + shift + Z: Redo

o shift + LI ILd: Select text

shift + command + LJ6 e 6d:

Select to the beginning/end of the
line

Types

Name Type Mutable? Examples

Boolean bool no True, False

Integer int no 47,25000, 25_000

Floating point float no 3.14,2.7e5

Complex complex no 33,5 + 93

Text string str no 'alas’', "alack", '''a verse attack'''

List list yes ['Winken', 'Blinken', 'Nod']

Tuple tuple no (2, 4, 8)

Bytes bytes no b'ab\xff'

ByteArray bytearray Yes bytearray(...)

Set set yes set([3, 5, 7])

Frozen set frozenset no frozenset(['Elsa', 'Otto'])

Dictionary dict yes {'game': 'bingo', 'dog': 'dingo', 'drum
mer': 'Ringo'}

» The Type column shows Python’s official type name.
* Mutable?
mutable — can be changed after creation

X immutable — cannot be changed after creation

One List, Many Types

list example = [10, 1.23, "like this",

print(list_example)
type(list example)

» Common built-in types:
= 1int (e.g., 10)
= float (e.g., 1.23)
= str(eg., "hello")
= bool (e.g., True)
= NoneType (e.g., None)

« A list can contain mixed types.

True, None]

11

Square Brackets [] in Python

vector = ['a', 'b']

vector[0]

o Use [] to create a list

» Use [] to access an element by index

12

Curly Braces {} in Python

{'a', 'b'} # set

{'first letter': 'a', 'second letter': 'b'} # dictionary (key:value pairs)
» {} is used to denote a set or a dictionary

o Use {} for sets and dictionaries

13

Parentheses () in Python

num tup = (1, 2, 3)

sum(num_tup)

 Use () for tuples

» Use () to pass arguments into functions

14

& Data Containers in Python—List and Tuple
List

» Stores multiple values in an ordered sequence

* &) Mutable: You can change it after creation

fruits = ["apple", "banana", "orange"]
fruits.append("grape")
fruits[0] = "pear"

Tuple

» Stores multiple values in an ordered sequence

» @ Immutable: Cannot be changed after creation

geneseo_coords = (40.7158, 77.8136)

geneseo_coords[0] # 8 reading is OK

geneseo _coords[0] = 100 # XK cannot modify

15

= Data Containers in Python—Dictionaries

city to temp = {
"Paris": 28,
"London": 22,
"New York": 18,
"Seoul": 29,

"Rochester": 10

}

city to temp["Paris"] # O look up a value by key
city to temp["London"] = 32 # N, update a value

city to temp.keys() # # all keys

city to temp.values() # % all values

city to temp.items() # - (key, value) pairs

» Stores values as key—value pairs
» Keys are used for fast lookup

 Useful when you want to create associations (“mapping”)

16

Running on Empty

st = []

tup = ()
dic = {}

» Being able to create empty containers is sometimes useful, especially
when using loops (e.g., Tor, while).

* Q. What is the type of an empty list?

17

Operators +— X =

« All of the basic operators we see
in mathematics are available to

a use:

a->b

a * b + add

a ** b

a /b — subtract

a// b .

a s b * multiply
sk power
/ divide
// integer divide (floor

division)

% remainder

18

Operators Also Work for Lists and Strings

string one = "This is an example

string two = "of string concatenation'

string_full = string one + string two

print(string full)

string = "apples,
print(string * 3)

e + concatenates (joins) strings

* x repeats a string multiple times

list one = ["apples", "oranges"]
list two = ["pears", "satsumas"]
list full = list one + list two
print(list full)

» + concatenates (combines) lists
into a longer list

19

Casting Variables

orig number = 4.39898498 mod_number = int(orig number)
type(orig_number) mod number

type (mod number)

» Casting changes type using built-in functions:
int(), float(), str()

If we try these, Python will do its best to interpret the input and
convert it to the output type we’d like and, if they can’t, the code
will throw a great big error.

e Q. Classwork 2.1

20

http://localhost:4469/danl-cw/danl-210-cw-02.html#question-1

v Booleans, Conditions,

and 1f Statements

Booleans

» Boolean values are either:

= [rue

= False

int(True)
int(False)

* In Python, Booleans can be
converted to integers:

= int(True) is 1
= int(False) isO

23

Boolean Operators

Operator Description

x and y True only if both are True
X ory True if at least one is True
not x Flips True < False

Here, both x and y are boolean.

» Existing booleans can be combined by a boolean operator, which create
a boolean when executed.

24

.. Comparison Operators

Operator Description

Xl=y not equal

X>=y greater than or equal to

X <=y less than or equal to

Here, both x and y are variables.

25

= The Equality Operator ==

boolean conditionl = 10 == 20
boolean condition2 = 10 == '10'
» The == is an operator that compares the objects on either side and

returns True if they have the same values

» Q. Whatdoes not (not True) evaluate to?
e Q. Classwork 2.2

26

http://localhost:4469/danl-cw/danl-210-cw-02.html#question-2

Conditions — Boolean Expressions

x =10

print(x > 5) # True
print(x == 3) # False
print(x != 0) # True

* A condition is an expression that returns True or Fa lse.

27

@ -~ Condition and 1f Statements

name = "Geneseo"

score = 99

if name == "Geneseo" and score > 90:
print("Geneseo, you achieved a high score.")

if name == "Geneseo" or score > 90:
print("You could be called Geneseo or have a high score")

if name != "Geneseo" and score > 90:
print("You are not called Geneseo and you have a high score")

» The real power of conditions comes when we start to use them in more
complex examples, such as 1f statements.

28

The 1n Keyword: Membership Test

name list = ["Lovelace", "Smith", "Hopper", "Babbage"]

"Lovelace"” in name list

"Bob" in name_ list

 1n checks whether something exists inside a list, string, etc.

» Q. Check if “a” is in the string “Wilson Ice Arena” using 1n. Is “a” in
“Anyone”?

29

if-else Chain

O 00 4 o U1 b W N =

=
o

score = 98

if score == 100:
print("Top marks!")

elif score > 90 and score < 100:
print("High score!")

elif score > 10 and score <= 90:
pass

else:

print("Better luck next time.")

30

1f Statements with 1n

fruits = ["apple", "banana", "cherry"]
favorite = "banana"

if favorite in fruits:

print(f"{favorite} is available!")

else:

print(f"{favorite} is not in the list.")

» The keyword 1n lets you check whether a value is present in a list,
string, or other iterable.

 This works seamlessly inside an 1f—e Lse structure.
 Useful for membership tests such as:
Validating if a company is in a stock list

Seeing if a word exists in a sentence

31

f-Strings (Formatted Strings) in Python

An f-string is a convenient way to create strings that include variable values
directly inside the text.

Key idea: Put an T before the quotation marks, then use { } to insert
variables.

name = "Ada"

age = 20

message = f"My name is {name} and I am {age} years old."

print (message)

32

Indentation

x = 10

if x > 2:

print("x is greater than 2")

In Python, indentation is required for code blocks, such as code inside:
a user-defined function (def ...),
a conditional (1f / elif / else),
aloop (for / while).

Indentation is how Python knows which lines belong to a block.
It tells the interpreter what should run inside the block (e.g., inside an
1) and what should run after the block ends.

Standard Python style is 4 spaces per indentation level.

In Google Colab, you might see 2 spaces.

Q. Classwork 2.3

33

http://localhost:4469/danl-cw/danl-210-cw-02.html#question-3

A Slicing Methods with

Strings and Lists

7% Slicing Methods

» Slicing methods can apply for strings, lists, and DataFrames.
» With slicing methods, we can get a subset of the data object.
 Python is:

zero-indexed (things start counting from 0)

left inclusive

right exclusive when we specify a range

36

< Slicing Patterns

letters = "abcdefghij" ° Slice fOI'matI [Sta rt : end
letters[:] # whole string Step]

letters[3:] # from index 3 to end . Sta rt is included
letters[:5] # from start to index

letters[:-4] # take the last 4 chat n end is excluded
letters[2:7] # index 2 to 6

letters[::2] # step size 2 n Step COI’]tFOlS hOW many
letters[::-1] # reverse

characters to skip

» 4 Important (when you “skip” numbers)
If you omit start or end, Python fills them in automatically:

= If start is missing = slicing starts from the beginning
= If end is missing = slicing goes to the end

= Example: letters[::2] means “from the beginning to the end,
taking every 2nd character.”

37

\ Length of a String and a List

string = "cheesecake"

len(string) len(list of numbers)

» Both strings and list objects support Len ()

» len() tells you how many items/characters are stored

list of numbers = [1, 2,

3,

4,

5]

38

QP 2=

- Slicing with Lists

list example = ['one', 'two', 'three']
list example[0 : 1]
list example[1 : 3]

 Python is

a zero-indexed language (things start counting from zero);

left inclusive;

right exclusive when we are specifying a range of values.

39

% = Slicing with Lists

» We can think of items in a list-like object as being fenced in.

= The index represents the fence post.

40

Get an Item by [index]

1 suny = ['Geneseo', 'Brockport', 'Oswego', 'Binghamton’,
2 'Stony Brook', 'New Paltz']

1 suny[0] 1 suny[-1]

2 suny[1l] 2 suny[-2]

3 suny[2] 3 suny[-3]

4 suny[7] 4 suny[-7]

9° Get an Item with a Slice

suny = ['Geneseo', 'Brockport', 'Oswego', 'Binghamton',
'Stony Brook', 'New Paltz']

suny[0:2] # A slice of a list is also a list.
suny[: : 2] suny[4 :]
suny[: : -2] suny[-6 :]

suny[: : -1] suny[-6 : -2]

B W N R

suny[-6 : -4]

e Q. Classwork 2.4

42

http://localhost:4469/danl-cw/danl-210-cw-02.html#question-4

Functions, Arguments,

and Parameters

© Functions

int("20") 1st = [1,2,3,4]

float("14.3")

str(5) type(lst)

int("xyz") len(1lst)

print ("DANL 210") max(lst)
sum(lst)

Common built-in functions you will use often:

type() — data type « max() — largest value

Llen() — length e sum() — total

A function can take inputs (called arguments) and return an output.

Python also lets you define your own functions with the def keyword.

Later, we will use such user-defined function together with pandas.

45

© == Functions, Arguments, and Parameters

print("Cherry", "Strawberry", "Key Lime")
print("Cherry", "Strawberry", "Key Lime", sep = "!")

print("Cherry", "Strawberry", "Key Lime", sep=" ")
» To call a function, write its name followed by parentheses:
= function_name(...)

* Inside the parentheses, you provide arguments (inputs), separated by
commas.

A parameter is the name used in the function definition for an expected
Input
= Example: sep is a parameter of print().

* A default argument is the value used automatically if you do not specify
it.

= Forprint(), the default separator is a space: sep = '
Q. Classwork 2.5

46

http://localhost:4469/danl-cw/danl-210-cw-02.html#question-5

= Loop with while and
for

+ = Updating a Variable with +=

count =1 count =1
count += 1 count = count + 1
print(count) print(count)

» +=is a shortcut assignment operator
« It means: take the current value and add something to it

» E.g.,: count += 1 means the same thing as count =

count + 1.

49

) T Repeat with while

count = 1 How this loop works
while count <= 5:
print(count) 1. Start with count = 1.

count += 1

2. Check the condition: count <= 5
e If itis True, run the loop body.

Print the current value of count.

Update count using count += 1.

Go back to step 2 and repeat.

o o A~ W

The loop stops when count <= 5
becomes False.

50

= Asking the user for input

stuff = input()

Type something and press Return/Enter on Python Console
before running print(stuff)

print(stuff)

input() pauses the program and waits for the user to type something.

Whatever the user types is returned as a string.

This is useful when you want to make your code interactive.

51

@& Cancel an Infinite Loop with break

while True:
user_ input = input("Enter 'yes' to continue or 'no' to stop: ")
if user input.lower() == 'no':
print("Exiting the loop. Goodbye!")
break
elif user input.lower() == 'yes':
print("You chose to continue.")
else:

print("Invalid input, please enter 'yes' or 'no'.")

» While loop is used to execute a block of code repeatedly until given
boolean condition evaluated to False.

= while True creates an infinite loop
» The loop runs forever unless you stop it using break

» break exits the loop immediately

52

Skip Ahead with continue

while True:

value = input("Integer, please [g to quit]: ")

if value == 'q': # quit
break

number = int(value)

if number % 2 == 0: # an even number
continue

print(number, "squared is", number*number)

» continue skips the rest of the loop body for the current iteration

» Then Python jumps back to the top of the loop

&) ° Iterate with for and in

» Use a for loop when you want to go through each item in:
= astring
= alist
= arange (range())

= or any iterable object

54

+ Repeat with a for Loop
for loop syntax (the pattern) 1st_nums = [0, 1, 2, 3, 4]

for <item name> in <iterable>:

for num in lst nums:
<indented code block using <item name>> .
— print (num)

How this loop works

1. Take the first item in Lst_nums — setnum = @ = run print(num)
. Take the next item = setnum = 1 = run print(num)
. Repeat for 2, 3, 4

LN

Stop after the last item

55

Two Ways to Loop Through an lterable

while approach for approach
word = 'thud' word = 'thud'
offset = 0 for letter in word:
while offset < len(word): print(letter)

print(word[offset])
offset += 1

» Which one do you prefer?

e Q. Classwork 2.6

56

http://localhost:4469/danl-cw/danl-210-cw-02.html#question-6

& Generate Number Sequences with range ()

list(range(l, 4))
list(range(0, 4))

« range() creates a sequence of

list(range(4)) integers without storing a full list

list(range(0, 4, 2))

« This is memory-efficient and very

for x in range(0, 4): common in Tor loops

print(x)

» Syntax is similar to slicing:

e range(start, stop, step)

start defaults to 0
step defaults to 1

the sequence stops right before stop

57

& Get Index + Value with enumerate()

fruits = ["apple", "banana", "orange"]

« enumerate() gives you
default: starts counting at 0 two things Whlle looping:

for i, fruit in enumerate(fruits):

= the index (1)

print(i, fruit)

= the value (fruit)

start counting at 1
for i, fruit in enumerate(fruits, start=1):

print (i, fruit)
» Very handy when you want to label, number, or track positions.
e Syntax: enumerate(iterable, start=0)
= 1terable can be a list, tuple, string, etc.

= start controls the first index (default is 0)

@& Cancel a for Loop with break

1 word = 'thud'
2 for letter in word:
3 if letter == 'u':

break

4
5 print(letter)

» break exits the loop immediately

59

Lzl Skip in a for Loop with continue

1 word = 'thud'

2 for letter in word:

3 if letter == 'u':
4 continue
5 print(letter)

» continue skips the current iteration and moves to the next one

60

Loop Control: continue, pass, break

1 for num in range(l, 6):

2

3 if num == 2:

4 continue # skip printing 2
5

6 if num == 3:

7 pass # do nothing, move on
8

9 if num == 4:

10 break # exit the loop
11

12 print (num)

« continue — skips to the next iteration
» pass — does nothing (useful as a placeholder)

» break — exits the loop completely
e Q. Classwork 2.7

http://localhost:4469/danl-cw/danl-210-cw-02.html#question-7

Bl 7 4 List and Dictionary

Comprehensions

? [] What is List Comprehension?

* A concise way to create or modify lists.

« Syntax: [expression for item in iterable if condition]

1. Creating a List of Squares:
squares = [x**2 for x in range(5)]
2. Filtering Items:

numbers = [1, 2, 3, 4, 5, 6]

evens = [x for x in numbers if x != 2]

64

? I What is Dictionary Comprehension?

» A concise way to create or modify dictionaries.
o Syntax: { key_expression : value_expression for item in iterable if
condition }

Creating a Dictionary of Squares:
squares_dict = {x: x**2 for x in range(5)}
2. Filtering Dictionary Items:

my dict = {'a': 1, 'b': 2, 'c': 3, 'd': 4}
filtered dict = {k: v for k, v in my dict.items() if v != 2}

3. Swapping Keys and Values:

original dict = {'a': 1, 'b': 2, 'c': 3}

swapped dict = {v: k for k, v in original dict.items()}

65

~“ Modifying Lists and

Dictionaries

The . (dot) Operator on an Object

text = "GeNeSeO"
print(text.lower()) # method on a string object
print(text.upper()) # another string method

* In Python, the dot operator (.) means:
“go inside this thing and access one of its members.”

» Many data types come with built-in methods you can call using the dot
operator.
 Example: For strings, . Lower () is a method that returns a lowercase

version of the string.

» (4 Here, text is a string object, and text. lower () means:
“use the lower() method that belongs to the string type.”

68

“\ Adding an Item to a List

o append(): Adds an item to the end of the list.

my list = [1, 2, 3]
my list.append(4)

69

“\ Deleting Items in a List

o remove(): Deletes the first occurrence of value in the list.

my list = [1, 2, 3, 4, 2]

my list.remove(2)

» List Comprehension: Removes items based on a condition.

my list = [1, 2, 3, 4, 2]

[x for x in my list if x != 2]

my list

» del statement: Deletes an item by index or a slice of items.

my list = [1, 2, 3, 4]
del my list[1]
del my list[1l:3]

70

“\ Adding/Updating Items in a Dictionary
» update(): Adds new key-value pairs or updates existing ones.

my dict = {'a': 1, 'b': 2}

my dict.update({'c': 3})

my dict.update({'a': 10})

my dict.update({'e': -1, 'f': 0})

71

“\ Deleting Items in a Dictionary

* Dictionary Comprehension: Removes items based on a condition.

{'a': 1, 'b': 2, 'c': 3}

{k: v for k, v in my dict.items() if v != 2}

my dict

my dict
» del statement: Deletes an item by key.

my dict = {'a': 1, 'b': 2, 'c': 3}
del my dict['b']

e Q. Classwork 2.8

72

http://localhost:4469/danl-cw/danl-210-cw-02.html#question-8

A 9 Handle Errors with try

and except

Errors

short list = [1, 2, 3]
2] # 5 1is out of range

positions = [0, 1, 5,

for i in positions:
print(short list[i])

* If we don’t write our own exception handler, Python will:

print an error message (a traceback) explaining what went wrong,

and

stop the program.

75

€ Exception Handlers (Why we need them)

* In Python, when something goes wrong, an exception is raised.

« If we're running code that might fail, we can add an exception handler
so the program can respond nicely instead of crashing.

« Common examples:
Using an index that’s out of range for a list/tuple

Looking up a key that doesn’t exist in a dictionary

76

1, § Handle Errors with try and except

short list = [1, 2, 3]

positions = [0, 1, 5, 2] # 5 1is out of range

for i in positions:
try:
print(short list[i])
except:

print("Index error:", i, "is not between 0 and", len(short list) - 1)

» Use try to run code that might fail, and except to handle the error
gracefully.

= If an error occurs, Python raises an exception and runs the except
block.

= If no error occurs, Python skips the except block.
e Q. Classwork 2.9

77

http://localhost:4469/danl-cw/danl-210-cw-02.html#question-9

& ¥ Importing and

Installing Modules,
Packages, and Libraries

WLJ Importing Modules, Packages, and Libraries

 Python is a general-purpose programming language and is not
specialized for numerical or statistical computation.

» The core libraries that enable Python to store and analyze data

efficiently are:
= pandas

= numpy

80

“ pandas

!l pandas

» pandas provides Series and DataFrames which are used to store
data in an easy-to-use format.

81

numpy

g
0‘0

25 NumPy

» numpy, numerical Python, provides the array block (np.array()) for
doing fast and efficient computations;

82

vvvvv

» A module is basically a bunch of related codes saved in a file with the
extension . pYy.

A package is basically a directory of a collection of modules.

A library is a collection of packages

We refer to code of other module/package/library by using the Python
import statement.

import LIBRARY NAME

This makes the code and variables in the imported module available to
our programming codes.

83

= import statement with as or from

Keyword as Keyword from

» We can use the as keyword when ¢ We can use the from keyword

importing the when specifying Python

module/package/library using its module/package/library from

canonical names. which we want to import
something.

import LIBRARY as SOMETHING SHORT

from LIBRARY import FUNCTION, PACKAGE,

84

K@ pip tool

» To install a library LIBRARY on To install a library LIBRARY on
your Google Colab, run: your Anaconda Python, open your

Spyder IDE, Anaconda Prompt, or
Terminal and run:

!pip install LIBRARY

pip install LIBRARY

85

< The . (dot) Operator on a Library
* In Python, the dot operator (.) means:
“go inside this thing and access one of its members.”
module.name — access something defined inside the module

object.attribute or object.method() — access a
property or function of an object

86

Example 1: import sys

1 import sys

2

3 print(sys.version) # attribute: Python version info
4 print(sys.path) # attribute: module search paths

Here, sys is a module, and sys.version and sys.path are things
inside the sys module.

87

Example 2: import datetime

import datetime

now = datetime.datetime.now() # module.class.method()

today = datetime.date.today() # module.class.method()
« datetime (left side) is the module
o datetime.datetime is a class inside the module

o .now() is a method you can call from that class

* A class is a blueprint for creating objects that bundles attributes and
methods together.

88

Common Patterns to Remember

e module.something
« module.class_name.method name()

e object.method_name()

Read it like:

“start with the thing on the left = use . to reach something inside —
then (maybe) call it with ()”

e Q. Classwork 2.10

89

http://localhost:4469/danl-cw/danl-210-cw-02.html#question-10

